If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x+12=10
We move all terms to the left:
3x^2+20x+12-(10)=0
We add all the numbers together, and all the variables
3x^2+20x+2=0
a = 3; b = 20; c = +2;
Δ = b2-4ac
Δ = 202-4·3·2
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{94}}{2*3}=\frac{-20-2\sqrt{94}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{94}}{2*3}=\frac{-20+2\sqrt{94}}{6} $
| -8x+3=180 | | 2x+2=3x+23 | | -1x=-100 | | 20=-5(x+9) | | -3z+10=25 | | (-3x+6=) | | 3x=-1.8 | | –16x+3x+6x−–3x=12 | | 8.3q=441.5 | | x+7=-4x-3 | | 94=m+8 | | -1=5-n | | 2x(x3)=12 | | (2x-3)^2=169 | | 6x+3x+5+40=180 | | x-10/5+x-8/6-x-5/10=x-11/3-5/2 | | 3x+4(5x+2)=7 | | 51=3.4y | | w+62=89 | | (5x)⁰+100=180 | | 2/5p+7=16 | | 1x=-44 | | x=x-9/15=2x-9/10 | | 1/2(6x-10)=8x-5 | | 20h-20h+h+2h-2h=14 | | 96=k+5 | | 6(-3)=x | | 2(3x+2)+10=6x+14 | | 90+5x-18+23=180 | | 21-2k=-9 | | 33=-9n-3 | | 100=20t+4.9t^2 |